Upper Quantum Lyapunov Exponent and Anosov relations for quantum systems driven by a classical flow
نویسنده
چکیده
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperbolicity properties of almost-periodic quantum parametric oscillators and we show that their upper Lyapunov exponents are positive and equal to the Lyapunov exponent of the corresponding classical parametric oscillators. As second example, we show that the configurational quantum cat system satisfies quantum Anosov properties.
منابع مشابه
5 Upper Quantum Lyapunov Exponent and Anosov relations for quantum systems driven by a classical flow
We generalize the definition of quantum Anosov properties and the related Lyapunov exponents to the case of quantum systems driven by a classical flow, i.e. skew-product systems. We show that the skew Anosov properties can be interpreted as regular Anosov properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory. This extension allows us to describe the hyperboli...
متن کاملDesigning a hybrid quantum controller for strongly eigenstate controllable systems
In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...
متن کاملexponent in quantum mechanics . A phase - space approach
Using the symplectic tomography map, both for the probability distributions in classical phase space and for the Wigner functions of its quantum counterpart, we discuss a notion of Lyapunov exponent for quantum dynamics. Because the marginal distributions, obtained by the tomography map, are always well defined probabilities, the correspondence between classical and quantum notions is very clea...
متن کاملQuantum-classical correspondence on compact phase space
We propose to study the L-norm distance between classical and quantum phase space distributions, where for the latter we choose the Wigner function, as a global phase space indicator of quantum-classical correspondence. For example, this quantity should provide a key to understand the correspondence between quantum and classical Loschmidt echoes. We concentrate on fully chaotic systems with com...
متن کاملCharacterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis
The driven double-well Duffing oscillator is a well-studied system that manifests a wide variety of dynamics, from periodic behavior to chaos, and describes a diverse array of physical systems. It has been shown to be relevant in understanding chaos in the classical to quantum transition. Here we explore the complexity of its dynamics in the classical and semi-classical regimes, using the techn...
متن کامل